Wednesday, January 27, 2010

Management of stable COPD

Bronchodilators

Bronchodilators are medicines that relax smooth muscle around the airways, increasing the calibre of the airways and improving air flow. They can reduce the symptoms of shortness of breath, wheeze and exercise limitation, resulting in an improved quality of life for people with COPD. They do not slow down the rate of progression of the underlying disease. Bronchodilators are usually administered with an inhaler or via a nebulizer.
There are two major types of bronchodilator, β2 agonists and anticholinergics. Anticholinergics appear to be superior to β2 agonists in COPD. Anticholinergeics reduce respiratory deaths while β2 agonists have no effect on respiratory deaths. Each type may be either long-acting (with an effect lasting 12 hours or more) or short-acting (with a rapid onset of effect that does not last as long).

 β2 agonists
β2 agonists stimulate β2 receptors on airway smooth muscles, causing them to relax. There are several β2 agonists available. Salbutamol or albuterol (common brand name: Ventolin) and terbutaline are widely used short acting β2 agonists and provide rapid relief of COPD symptoms. Long acting β2 agonists (LABAs) such as salmeterol and formoterol are used as maintenance therapy and lead to improved airflow, exercise capacity, and quality of life.

Anticholinergics
Anticholinergic drugs cause airway smooth muscles to relax by blocking stimulation from cholinergic nerves. Ipratropium is the most widely prescribed short acting anticholinergic drug. Like short-acting β2 agonists, short-acting anticholinergics provide rapid relief of COPD symptoms and a combination of the two is commonly used for a greater bronchodilator effect. Tiotropium is the most commonly prescribed long-acting anticholinergic drug in COPD. It is has more specificity for M3 muscarinic receptors so may have fewer side-effects than other anticholinergic drugs. Regular use is associated with improvements in airflow, exercise capacity, quality of life and possibly a longer life.

Corticosteroids
Corticosteroids act to reduce the inflammation in the airways, in theory reducing lung damage and airway narrowing caused by inflammation. Unlike bronchodilators, they do not act directly on the airway smooth muscle and do not provide immediate relief of symptoms. Some of the more common corticosteroids in use are prednisone, fluticasone, budesonide, mometasone, and beclomethasone. Corticosteroids are used in tablet or inhaled form to treat and prevent acute exacerbations of COPD. Well-inhaled corticosteroids (ICS) have not been shown to be of benefit for people with mild COPD, however, they have been shown to decrease acute exacerbations in those with either moderate or severe COPD. They however have no effect on overall one-year mortality and are associated with increased rates of pneumonia.

Other medication
Theophylline is a bronchodilator and phosphodiesterase inhibitor that in high doses can reduce symptoms for some people who have COPD. More often, side effects such as nausea and stimulation of the heart limit its use. In lower doses, it may slightly reduce the number of COPD exacerbations. The investigative phosphodiesterase-4 antagonists, roflumilast and cilomilast have completed Phase-2 clinical trials. Tumor necrosis factor antagonists such as infliximab suppress the immune system and reduce inflammation. Infliximab has been trialled in COPD but there was no evidence of benefit with the possibility of harm.

Supplemental oxygen
Oxygen can be delivered in different forms: in large containers, in smaller containers with liquid oxygen, or with the use of a oxygen concentrator (shown here) which derives oxygen from room air. The latter two options improve mobility of people requiring long-term oxygen therapy.
Supplemental oxygen can be given to people with COPD who have low oxygen levels in the body. Oxygen is provided from an oxygen cylinder or an oxygen concentrator and delivered to a person through tubing via a nasal cannula or oxygen mask. Supplemental oxygen does not greatly improve shortness of breath but can allow people with COPD and low oxygen levels to do more exercise and household activity. Long-term oxygen therapy for at least 16 hours a day can improve the quality of life and survival for people with COPD and arterial hypoxemia or with complications of hypoxemia such as pulmonary hypertension, cor pulmonale, or secondary erythrocytosis. High concentrations of supplemental oxygen can lead to the accumulation of carbon dioxide and respiratory acidosis for some people with severe COPD; lower oxygen flow rates are generally safer for these individuals.

Pulmonary rehabilitation
Pulmonary rehabilitation is a program of exercise, disease management and counselling coordinated to benefit the individual. Pulmonary rehabilitation has been shown to improve shortness of breath and exercise capacity. It has also been shown to improve the sense of control a patient has over their disease as well as their emotions.

Nutrition
Being either underweight or overweight can affect the symptoms, degree of disability and prognosis of COPD. People with COPD who are underweight can improve their breathing muscle strength by increasing their calorie intake. When combined with regular exercise or a pulmonary rehabilitation programme, this can lead to improvements in COPD symptoms.

0 comments:

Post a Comment


free counter
free counters